MATH3280A Introductory Probability, 2014-2015 Solutions to HW5

P. 246 Ex. 8

Solution

The probability density function of X is given by

$$
f_{X}(t)= \begin{cases}e^{-t} & , \text { if } t \geq 0 \\ 0 & , \text { if } t<0\end{cases}
$$

Denote the distribution function of X by F_{X}.

$$
Y= \begin{cases}X & , \text { if } X \leq 1 \\ \frac{1}{X} & , \text { if } X>1\end{cases}
$$

Then the distribution function of Y is

$$
\begin{aligned}
F_{Y}(t) & =P(Y \leq t) \\
& =P(Y \leq t \mid X \leq 1) P(X \leq 1)+P(Y \leq t \mid X>1) P(X>1) \\
& =P(X \leq t \mid X \leq 1) P(X \leq 1)+P\left(\left.\frac{1}{X} \leq t \right\rvert\, X>1\right) P(X>1) \\
& = \begin{cases}0 & , \text { if } t \leq 0 \\
\left.\frac{P(X \leq t \text { and } X \leq 1)}{P(X \leq 1)} P(X \leq 1)+\frac{P(X \geq 1 / t \text { and } X>1)}{P(X>1)} P(X>1)\right) & , \text { if } 0<t<1 \\
\left.\frac{P(X \leq t \text { and } X \leq 1)}{P(X \leq 1)} P(X \leq 1)+\frac{P(X \geq 1 / t \text { and } X>1)}{P(X>1)} P(X>1)\right) & , \text { if } t \geq 1\end{cases} \\
& = \begin{cases}0 & , \text { if } t \leq 0 \\
P(X \leq t)+P\left(X \geq \frac{1}{t}\right) & , \text { if } 0<t<1 \\
P(X \leq 1)+P(X>1) & , \text { if } t \geq 1\end{cases} \\
& = \begin{cases}0 & , \text { if } t \leq 0 \\
F_{X}(t)+1-F_{X}\left(\frac{1}{t}\right) & \text { if } 0<t<1 \\
1 & \end{cases}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
F_{Y}^{\prime}(t) & = \begin{cases}0 & , \text { if } t<0 \text { or } t>1 \\
f_{X}(t)-\left(-\frac{1}{t^{2}}\right) f_{X}\left(\frac{1}{t}\right) & , \text { if } 0<t<1\end{cases} \\
& = \begin{cases}0 & , \text { if } t<0 \text { or } t>1 \\
e^{-t}+\frac{1}{t^{2}} e^{-\frac{1}{t}} & , \text { if } 0<t<1\end{cases}
\end{aligned}
$$

Define

$$
f_{Y}(t)= \begin{cases}0 & , \text { if } t<0 \text { or } t>1 \\ e^{-t}+\frac{1}{t^{2}} e^{-\frac{1}{t}} & , \text { if } 0 \leq t \leq 1\end{cases}
$$

We can check that

$$
\int_{-\infty}^{t} f_{Y}(y) d y=F_{Y}(t), \text { for any } t \in \mathbb{R}
$$

Hence f_{Y} is a probability density function of Y.

P. 267 Ex. 10

Solution

The probability density function of θ is

$$
f_{\theta}(t)= \begin{cases}\frac{1}{\pi} & , \text { if }-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \\ 0 & , \text { if } t<-\frac{\pi}{2} \text { or } t>\frac{\pi}{2} .\end{cases}
$$

Denote the distribution function of θ by F_{θ}.

The distribution function of $X=\tan (\theta)$ is

$$
\begin{aligned}
F_{X}(t) & =P(\tan (\theta) \leq t) \\
& =P(\theta \leq \arctan (t)) \\
& =F_{\theta}(\arctan (t)), \text { for any } t \in \mathbb{R} .
\end{aligned}
$$

A probability density function of X is

$$
\begin{aligned}
f_{X}(t)=F_{X}^{\prime}(t) & =F_{\theta}^{\prime}(\arctan (t)) \\
& =f_{\theta}(\arctan (t)) \frac{d}{d t} \arctan (t) \\
& =\frac{1}{\pi\left(1+t^{2}\right)}, \text { for any } t \in \mathbb{R} .
\end{aligned}
$$

P. 281 Ex. 9

Solution

Let X be the random variable of the length of a steel sheet manufactured. It is given that $X \sim N\left(75,1^{2}\right)$.
We have $X-75 \sim N\left(0,1^{2}\right)$, the standard normal random variable.
The required probability is

$$
\begin{aligned}
P(74.5 \leq X \leq 75.8) & =P(-0.5 \leq X-75 \leq 0.8) \\
& =P(X-75 \leq 0.8)-P(X-75<-0.5) \\
& =\Phi(0.8)-\Phi(-0.5) \\
& =\Phi(0.8)-(1-\Phi(0.5)) \\
& \approx 0.7881-(1-0.6915) \\
& =0.4796 .
\end{aligned}
$$

